Pemasangan & Konfigurasi Hadoop (Distribusi Pseudo) dan Latihan: WordCount2
VM Fedora
Saya cuba menyediakan Hadoop
dengan kluster nod tunggal (Single Node Cluster) di VM Fedora. Pada hemat saya, mungkin tak akan mampu lagilah untuk saya usahakan penyediaan pengoperasian berdistribusi penuh bersama Kerberos
sebagai kaedah pengesahan kerana Hadoop
memerlukan sistem yang berprestasi tinggi.
Berdasarkan jawapan yang disediakan oleh platform-platform AI, saya ringkaskan syarat minimum sistem untuk mengehoskan Hadoop
dengan kluster nod tunggal, memandangkan perkakasan komputer riba saya hanya mampu menampung sumber berskala kecil:
Perkakasan | Minimum | Saranan | VM saya |
---|---|---|---|
RAM: | 4GB | 8GB | 6GB |
CPU: | 2 cores | 4 cores | 6 cores |
Storan: | 50GB | 100GB | 50GB |
Servis: Apache Hadoop versi 3.4.0
Versi Java: Java 8 (dimuat turun dari laman web Oracle)
Pengguna: hadoop
Rujukan untuk contoh perintah baris bagi menjalankan VM disediakan melalui pautan yang tersenarai di bahagian bawah halaman ini.
Walaubagaimanapun, terdapat perbezaan dalam cara saya bersambung ke Internet kerana saya menggunakan kaedah manual melalui peranti TUNTAP
dengan alamat IP statik, berbanding kaedah biasa yang menetapkan alamat IP secara automatik melalui DHCP
. Contoh konfigurasi boleh didapati dalam penulisan saya yang bertajuk ‘Pemahaman Asas Kerberos dan SSH.’
1. SSH setup (sistem Hos & VM)
Suka untuk saya gunakan resolusi
hostname
dengan mengikat alamat IP mesin saya (IPv4
) kepada nama hos yang ditetapkan dengan menyunting fail/etc/hosts
seperti berikut:bash
192.168.0.100 single.node.loc snode
~/.ssh/config
# global options
Host *
IdentitiesOnly yes
IdentityFile ~/.ssh/id_rsa
## VMs
# with tuntap (kernel virtual network device)
Host snode
HostName single.node.loc
User hadoop
Pastikan sudah memasang pakej openssh
dan servis sshd
sudah dimulakan sebelum meneruskan proses di bawah ini.
bash
ssh snode
ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
chmod 0600 ~/.ssh/authorized_keys
2. Pakej prasyarat
Pasang pakej pdsh
. Pakej ini amat dicadang pemasangannya oleh Hadoop
untuk mendapatkan pengurusan sumber SSH
yang lebih baik. Saya pasang dari sumber dengan mengklon repositori GitHub-nya untuk mendapatkan konfigurasi bersama SSH yang tidak disediakan sebagai tetapan lalai oleh Fedora melalui repo rasminya.
Pasang pakej-pakej yang diperlukan untuk binaan dari sumber:
sudo dnf install autoconf libtool
Klon dan bina:
# inside $HOME
mkdir Build && cd Build
# Clone the repository.
git clone https://github.com/chaos/pdsh.git
# Get into the directory.
cd pdsh
# Run the following commands to compile and install. (Good Luck!)
./bootstrap
./configure --with-ssh
sudo make
sudo make install
### Confirm the installation by verifying its version.
pdsh -V
pdsh-2.35 rcmd modules: ssh,rsh,exec (default: rsh) misc modules: (none)
Pemasangan Java:
Muat turun Java SE Development Kit 8u421
(fail jdk-8u421-linux-x64.rpm) yang memerlukan pengguna untuk log masuk ke akaun Oracle dan pasang dengan perintah baris:
sudo dnf install jdk-8u421-linux-x64.rpm
3. Pemasangan Hadoop
Muat turun pakej binari dari laman web rasmi Hadoop dan ekstrak pakej kompres itu ke direktori rumah pengguna dengan perintah
tar
:wget -P ~/Downloads https://dlcdn.apache.org/hadoop/common/hadoop-3.4.0/hadoop-3.4.0.tar.gz # contoh tar -xvzf Downloads/hadoop-3.4.0.tar.gz
Edit fail
.bashrc
untuk menambah laluan:export JAVA_HOME="/usr/lib/jvm/jdk-1.8.0_421-oracle-x64" export HADOOP_HOME="$HOME/hadoop-3.4.0" export HADOOP_CLASSPATH="$JAVA_HOME/lib/tools.jar" export PATH="$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin"
Aktifkan perubahan.
source ~/.bashrc
4. Pengurusan FireWall di VM
- Memandangkan saya jalankan tugasan melalui SSH ke VM dari sistem hos, saya gunakan
UFW
sebagai pengurus FireWall untuk mendapatkan paparan web di hos.sudo dnf install ufw sudo systemctl enable --now ufw sudo ufw enable sudo ufw allow 8000:19999/tcp
5. Konfigurasi Hadoop
Sunting
$HADOOP_HOME/etc/hadoop/hadoop-env.sh
dan tambahkan baris di bawah:export JAVA_HOME="/usr/lib/jvm/jdk-1.8.0_421-oracle-x64"
$HADOOP_HOME/etc/hadoop/core-site.xml
:<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://snode:9000</value> </property> </configuration>
$HADOOP_HOME/etc/hadoop/hdfs-site.xml
:<configuration> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>namenodes</value> </property> <property> <name>dfs.namenode.http-address</name> <value>snode:9870</value> </property> <property> <name>dfs.namenode.secondary.http-address</name> <value>snode:9868</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>datanodes</value> </property> <property> <name>dfs.datanode.http.address</name> <value>snode:9864</value> </property> </configuration>
$HADOOP_HOME/etc/hadoop/mapred-site.xml
:<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.application.classpath</name> <value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>snode:19888</value> </property> <property> <name>mapreduce.jobhistory.intermediate-done-dir</name> <value>mr-history/tmp</value> </property> <property> <name>mapreduce.jobhistory.done-dir</name> <value>mr-history/done</value> </property> </configuration>
$HADOOP_HOME/etc/hadoop/yarn-site.xml
:<configuration> <property> <name>yarn.resourcemanager.hostname</name> <value>snode</value> </property> <property> <name>yarn.resourcemanager.webapp.address</name> <value>snode:8088</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.env-whitelist</name> <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value> </property> <property> <name>yarn.nodemanager.webapp.address</name> <value>snode:8042</value> </property> </configuration>
$HADOOP_HOME/etc/hadoop/workers
:snode
6. Mulakan servis
Format
NameNode
:hdfs namenode -format
Mulakan
daemon
HDFS dan YARN (contoh output):start-dfs.sh && start-yarn.sh && mapred --daemon start historyserver
Starting namenodes on [snode] Starting datanodes Starting secondary namenodes [snode] Starting resourcemanager Starting nodemanagers
- Semak proses-proses yang berlangsung dan contoh output:
sudo jps
2289 NodeManager 1970 SecondaryNameNode 1749 DataNode 2758 Jps 1639 NameNode 2190 ResourceManager 2671 JobHistoryServer
7. Praktis 1 (using a built-in example program called grep
)
Tambah direktori pengguna ke dalam Distributed filesystem:
# Return to $HOME cd ~ # Create the user directory. hdfs dfs -mkdir -p /user/hadoop # It will display 'mr-history' dir. hdfs dfs -ls /user/hadoop # Create the directory for the test. hdfs dfs -mkdir -p /user/hadoop/p1_intro/input # Copy files from the local fs to the distributed fs. hdfs dfs -put $HADOOP_HOME/etc/hadoop/*.xml /user/hadoop/p1_intro/input # Run a MapReduce job. hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.4.0.jar \ grep /user/hadoop/p1_intro/input /user/hadoop/p1_intro/output \ 'dfs[a-z.]+'
Semak direktori:
hdfs dfs -ls -C /user/hadoop/p1_intro hdfs dfs -ls -C /user/hadoop/p1_intro/output
/user/hadoop/p1_intro/output/_SUCCESS /user/hadoop/p1_intro/output/part-r-00000
- Output:
hdfs dfs -cat /user/hadoop/p1_intro/output/part-r-00000
1 dfsadmin 1 dfs.replication 1 dfs.namenode.secondary.http 1 dfs.namenode.name.dir 1 dfs.namenode.http 1 dfs.datanode.http.address 1 dfs.datanode.data.dir
Atau salin fail pengeluaran ke sistem lokal:
# OR copy the outputs from the distributed fs to the local fs for observation. hdfs dfs -get /user/hadoop/p1_intro/output output1
Sambung dengan latihan seterusnya.
8. Praktis 2 (WordCount2)
- Penyediaan:
# Create the directories for Practice 2. hdfs dfs -mkdir -p /user/hadoop/p2_wordcount2/input # Create two files; file1 & file2. touch file1 file2 # residing in the local fs. echo 'Hello World, Bye World!' > file1 echo 'Hello Hadoop, Goodbye to hadoop.' > file2 # Move the files from the local fs to the distributed fs. hdfs dfs -moveFromLocal file1 /user/hadoop/p2_wordcount2/input hdfs dfs -moveFromLocal file2 /user/hadoop/p2_wordcount2/input ### Confirm the moved files. hdfs dfs -ls -C /user/hadoop/p2_wordcount2/input
/user/hadoop/p2_wordcount2/input/file1 /user/hadoop/p2_wordcount2/input/file2
- Penyediaan awal untuk menggunakan ciri
DistributedCache
dalam dua kerja terakhir nanti:touch patterns.txt # Create patterns.txt with specified lines. echo -e '\\.\n\\,\n\\!\nto' > patterns.txt ### Confirm the contents of patterns.txt. cat patterns.txt
\. \, \! to
- Pindahkan fail di atas dari sistem lokal ke sistem distribusi:
hdfs dfs -moveFromLocal patterns.txt /user/hadoop/p2_wordcount2 ### Display directories and files in p2_wordcount2. hdfs dfs -ls -C /user/hadoop/p2_wordcount2
/user/hadoop/p2_wordcount2/input /user/hadoop/p2_wordcount2/patterns.txt
Salin kod
Java
ini ke dalam failWordCount2.java
(available in Hadoop documentation as Tutorial):import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.net.URI; import java.util.ArrayList; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.Counter; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.util.StringUtils; public class WordCount2 { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ static enum CountersEnum { INPUT_WORDS } private final static IntWritable one = new IntWritable(1); private Text word = new Text(); private boolean caseSensitive; private Set<String> patternsToSkip = new HashSet<String>(); private Configuration conf; private BufferedReader fis; @Override public void setup(Context context) throws IOException, InterruptedException { conf = context.getConfiguration(); caseSensitive = conf.getBoolean("wordcount.case.sensitive", true); if (conf.getBoolean("wordcount.skip.patterns", false)) { URI[] patternsURIs = Job.getInstance(conf).getCacheFiles(); for (URI patternsURI : patternsURIs) { Path patternsPath = new Path(patternsURI.getPath()); String patternsFileName = patternsPath.getName().toString(); parseSkipFile(patternsFileName); } } } private void parseSkipFile(String fileName) { try { fis = new BufferedReader(new FileReader(fileName)); String pattern = null; while ((pattern = fis.readLine()) != null) { patternsToSkip.add(pattern); } } catch (IOException ioe) { System.err.println("Caught exception while parsing the cached file '" + StringUtils.stringifyException(ioe)); } } @Override public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { String line = (caseSensitive) ? value.toString() : value.toString().toLowerCase(); for (String pattern : patternsToSkip) { line = line.replaceAll(pattern, ""); } StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); Counter counter = context.getCounter(CountersEnum.class.getName(), CountersEnum.INPUT_WORDS.toString()); counter.increment(1); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); GenericOptionsParser optionParser = new GenericOptionsParser(conf, args); String[] remainingArgs = optionParser.getRemainingArgs(); if ((remainingArgs.length != 2) && (remainingArgs.length != 4)) { System.err.println("Usage: wordcount <in> <out> [-skip skipPatternFile]"); System.exit(2); } Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount2.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); List<String> otherArgs = new ArrayList<String>(); for (int i=0; i < remainingArgs.length; ++i) { if ("-skip".equals(remainingArgs[i])) { job.addCacheFile(new Path(remainingArgs[++i]).toUri()); job.getConfiguration().setBoolean("wordcount.skip.patterns", true); } else { otherArgs.add(remainingArgs[i]); } } FileInputFormat.addInputPath(job, new Path(otherArgs.get(0))); FileOutputFormat.setOutputPath(job, new Path(otherArgs.get(1))); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
Semak kod terlebih dahulu dengan perintah
less
:less WordCount2.java
Penyusunan:
# Compile the WordCount2 Java source code. hadoop com.sun.tools.javac.Main WordCount2.java # Package the compiled Java classes into a JAR file. jar cf wc.jar WordCount*.class ### List compiled files and jars. ls ~/ | grep -E 'wc\.jar|WordCount2.*\.class'
wc.jar WordCount2$IntSumReducer.class WordCount2$TokenizerMapper$CountersEnum.class WordCount2$TokenizerMapper.class WordCount2.class
- Jalankan kerja
MapReduce
tanpa ciriDistributedCache
:hadoop jar wc.jar WordCount2 \ /user/hadoop/p2_wordcount2/input /user/hadoop/p2_wordcount2/output1 ### Check generated files and view output. hdfs dfs -cat /user/hadoop/p2_wordcount2/output1/part-r-00000
Bye 1 Goodbye 1 Hadoop, 1 Hello 2 World! 1 World, 1 hadoop. 1 to 1
- Perhatikan perubahan output untuk proses
MapReduce
di bawah:
= dengan menetapkan sensitiviti bagi jenis huruf kepada benar;
= dengan mengaktifkan ciriDistributedCache
melalui opsyen-skip
.hadoop jar wc.jar WordCount2 -Dwordcount.case.sensitive=true \ /user/hadoop/p2_wordcount2/input /user/hadoop/p2_wordcount2/output2 \ -skip /user/hadoop/p2_wordcount2/patterns.txt ### Observe the output. hdfs dfs -cat /user/hadoop/p2_wordcount2/output2/part-r-00000
Bye 1 Goodbye 1 Hadoop 1 Hello 2 World 2 hadoop 1
- Begitu juga untuk proses
MapReduce
di bawah:
= dengan menetapkan sensitiviti bagi jenis huruf kepada tidak benar;
= dengan mengaktifkan ciriDistributedCache
melalui opsyen-skip
.hadoop jar wc.jar WordCount2 -Dwordcount.case.sensitive=false \ /user/hadoop/p2_wordcount2/input /user/hadoop/p2_wordcount2/output3 \ -skip /user/hadoop/p2_wordcount2/patterns.txt ### Observe the output. hdfs dfs -cat /user/hadoop/p2_wordcount2/output3/part-r-00000
bye 1 goodbye 1 hadoop 2 hello 2 world 2
- Paparan web di:
NameNode: http://snode:9870/
ResourceManager: http://snode:8088/
MapReduce JobHistory Server: http://snode:19888/
- Setelah selesai, hentikan
daemon
YARN dan HDFS:mapred --daemon stop historyserver && stop-yarn.sh && stop-dfs.sh exit